Course Specification
(CS 313 Programming Language III)

	
	University:
	 	Helwan University

	Faculty:
			Faculty of Computers & Information

	Department:
	Computer science

1. Course Data

	Code:

	CS 313

	Course title:
	Programming Language III

	Level:
	2

	Specialization:
	Computer Science

	Credit hours:
	3 hours

	Number of learning units (hours):

	(3) theoretical 2) practical

2. Course Objective
This course builds on the foundation provided by preliminary courses in introduction to computers and programming, to introduce the fundamental concepts of data structures and the algorithms that proceed from them. Topics include recursion, fundamental data structures (including stacks, queues, linked lists, hash tables, trees, and graphs), and the basics of algorithmic analysis. At the end of the semester, if time permits, and if a course in Object Oriented Programming (typically in C++) is at least going in parallel with this course in the same semester, the underlying philosophy of object-oriented programming can be applied to some data structure, e.g. stacks.

3. Intended Learning Outcomes:
 A- Knowledge and Understanding:
 A6. Describe the Modeling Problems.
A21. Apply the principles of Object-Oriented Programming.
· Intellectual Skills
 B3. Develop Analytical Skills.
 B5. Collaborate Modeling and Simulation.
 B8. Gather and assess relevant information, using abstract ideas to
 interpret it effectively.
 B9. Design and implement Programming methods.
 B24. Represent Data structures.

	C- Professional and Practical Skills
C1. Choose the appropriate Programming Language.
 C9. Design computer-based systems.
 C18. Design of web pages based on the principles of human-computer
 interactions.

D- General and Transferable Skills

D3. Use different Problem Solving techniques.
 D5. Follow Creative Thinking.
 D11. Clarify Ideas formulation and presentation.
 D13. Practice Designing skills in software projects.
 D14. Practice Engineering skills for software development.

4. Course contents

	Topic
	No. of hours
	Lecture
	Tutorial/ Practical

	Review of elementary programming concepts and C programming language.
	3
	1
	Review of elementary programming concepts and C programming language.

	Software engineering:
Software validation, testing fundamentals, including test plan creation and test case generation.
	3
	1
	Software engineering:
Software validation, testing fundamentals, including test plan creation and test case generation.

	Encapsulation and information hiding; separation of behavior and implementation; basic built-in data structures, one-, two-, and three-dimensional arrays.
	3
	1
	Encapsulation and information hiding; separation of behavior and implementation; basic built-in data structures, one-, two-, and three-dimensional arrays.

	Fundamental data structures:
Stacks; queues; linked lists; hash tables; trees; graphs.
	3
	1
	Fundamental data structures:
Stacks; queues; linked lists; hash tables; trees; graphs.

	Recursion:
The concept of recursion; recursive mathematical functions; simple recursive procedures; divide-and-conquer strategies; recursive backtracking; implementation of recursion; writing recursive algorithms in iterative fashion; when and when not to use recursion;
	6
	2
	Recursion:
The concept of recursion; recursive mathematical functions; simple recursive procedures; divide-and-conquer strategies; recursive backtracking; implementation of recursion; writing recursive algorithms in iterative fashion; when and when not to use recursion;

	Basic algorithmic analysis:
Asymptotic analysis of upper and average complexity bounds; identifying differences among best, average, and worst case behaviors; big “O,” little “o,” omega, and theta notation; standard complexity classes; empirical measurements of performance; time and space tradeoffs in algorithms; using recurrence relations to analyze recursive algorithms
	6
	2
	Basic algorithmic analysis:
Asymptotic analysis of upper and average complexity bounds; identifying differences among best, average, and worst case behaviors; big “O,” little “o,” omega, and theta notation; standard complexity classes; empirical measurements of performance; time and space tradeoffs in algorithms; using recurrence relations to analyze recursive algorithms

	Fundamental computing algorithms:
O(N log N) sorting algorithms; hash tables, including collision-avoidance strategies; binary search trees; representations of graphs; depth- and breadth-first traversals
	6
	2
	Fundamental computing algorithms:
O(N log N) sorting algorithms; hash tables, including collision-avoidance strategies; binary search trees; representations of graphs; depth- and breadth-first traversals

	Object-oriented programming:
Object-oriented design; encapsulation and information hiding; classes; separation of behavior and implementation; class hierarchies; inheritance.
	6
	2
	Object-oriented programming:
Object-oriented design; encapsulation and information hiding; classes; separation of behavior and implementation; class hierarchies; inheritance.

	Algorithmic strategies:
Brute-force algorithms; greedy algorithms; divide-and-conquer; backtracking; branch-and-bound; heuristics; pattern matching and string/text algorithms.
	6
	2
	Algorithmic strategies:
Brute-force algorithms; greedy algorithms; divide-and-conquer; backtracking; branch-and-bound; heuristics; pattern matching and string/text algorithms.

	Review of elementary programming concepts and C programming language.
	3
	1
	Review of elementary programming concepts and C programming language.

	Software engineering:
Software validation, testing fundamentals, including test plan creation and test case generation.
	3
	1
	Software engineering:
Software validation, testing fundamentals, including test plan creation and test case generation.

	Encapsulation and information hiding; separation of behavior and implementation; basic built-in data structures, one-, two-, and three-dimensional arrays.
	3
	1
	Encapsulation and information hiding; separation of behavior and implementation; basic built-in data structures, one-, two-, and three-dimensional arrays.

	Fundamental data structures:
Stacks; queues; linked lists; hash tables; trees; graphs.
	3
	1
	Fundamental data structures:
Stacks; queues; linked lists; hash tables; trees; graphs.

Mapping contents to ILOs

	Topic
	Intended Learning Outcomes (ILOs)

	
	Knowledge and understanding
	Intellectual Skills
	Professional and practical skills
	General and Transferable skills

	Review of elementary programming concepts and C programming language.
	A6,A21
	B3
	C1,C9
	D3

	Software engineering
	A6,A21
	B8
	C1,C18
	D5

	Encapsulation and information hiding;
	A21
	B3,B8
	C1,C9
	D5,D3

	Fundamental data structures
	A21
	B8
	C1,C18
	D3

	Recursion
	A6
	B8
	C4
	D5

	Basic algorithmic analysis
	A6
	B8,B9
	C9
	D5

	Fundamental computing algorithms

	
	B24
	C18
	D3,D5

	Object-oriented Programming
	
	B5,B5,B8
	C9
	D5,D14

	Algorithmic strategies.
	
	B9,B24
	C1
	D11,D3,D5,D13

5. Teaching and Learning Methods

Class Lectures
Highly lab-based courses
Exercises

6. Teaching and Learning Methods for students with limited capability

	Using data show
	e-learning management tools

7. Students Evaluation

a) Used Methods
· Written exams to assess concepts related to Data Structures.
· Computer programs submitted in labs. (4 of them along the semester should be adequate).
· Written exercises solved in labs.

b) Time

Assessment 1: Test 1 	 	Week 4
Assessment 2: Test 2 	 	Week 7
Assessment 3: Midterm Exam 	Week 10
Assessment 4: Practical Exam 	Week 14
Assessment 5: final written exam 	Week 16

c) Grades Distribution
Mid-term Examination 		20 %
Final-Year Examination 		50 %
Semester Work 		20 %
Practical Exam			10%
 		Total			 	100%

Any formative only assessments

List of Books and References

a) Notes
Course Notes
- Handouts

b) Mandatory Books
		
- Kruse, R.L., C.L. Tondo, and B.P. Leung, Data structures and program design in C. 2nd ed. 1997, Upper Saddle River, N.J.: Prentice Hall. xvi, 671 p.

c) Suggested Books

- Langsam, Y., M. Augenstein, and A.M. Tenenbaum, Data structures using C and C++. 2nd ed. 1996, Upper Saddle River, N.J.: Prentice Hall. xvi, 672 p.
- Sedgewick, R., Algorithms in C. 3rd ed. 1998, Reading, Mass.: Addison-Wesley. <v. 1-2 in 5 >.
- Dale, N.B., C++ plus data structures. 4th ed. 2006, Sudbury, MA: Jones and Bartlett Publishers.
d) Other publications
Course Coordinator: Dr. Hala Abdel-Gelil
Chairman of the Department: Prof. dr. Iraqy Khalifa

